Information Propagation in Financial Markets: The Importance of Attention

Anastassia Fedyk (Harvard Business School)

FDSA Keynote Address

June 20, 2016
Importance of News in Financial Markets

- **Canonical case:** cancer breakthrough in 1997
 - Huberman and Regev (2001)
Importance of News in Financial Markets

- **Canonical case:** cancer breakthrough in 1997
 - Huberman and Regev (2001)

- **Key players:**
 - Judah Folkman’s team: breakthrough in cancer research
 - EntreMed (ENMD): biotech company with licensing rights
 - Bristol-Myers Squibb (BMY): pharmaceutical company partnered with EntreMed
Importance of News in Financial Markets

- **Canonical case:** cancer breakthrough in 1997
 - Huberman and Regev (2001)

- **Key players:**
 - Judah Folkman’s team: breakthrough in cancer research
 - EntreMed (ENMD): biotech company with licensing rights
 - Bristol-Myers Squibb (BMY): pharmaceutical company partnered with EntreMed

- **Media coverage:**
 - November 27, 1997: article in Nature, mentioned in popular press (incl. NYT)
 - May 3, 1998: front page article in NYT
 - Content: very similar to that on November 27, 1997
 - No other news on May 3
Importance of News in Financial Markets

- **Canonical case:** cancer breakthrough in 1997
 - Huberman and Regev (2001)

- **Key players:**
 - Judah Folkman’s team: breakthrough in cancer research
 - EntreMed (ENMD): biotech company with licensing rights
 - Bristol-Myers Squibb (BMY): pharmaceutical company partnered with EntreMed

- **Media coverage:**
 - **November 27, 1997:** article in Nature, mentioned in popular press (incl. NYT)
Importance of News in Financial Markets

- **Canonical case:** cancer breakthrough in 1997
 - Huberman and Regev (2001)

- **Key players:**
 - Judah Folkman’s team: breakthrough in cancer research
 - EntreMed (ENMD): biotech company with licensing rights
 - Bristol-Myers Squibb (BMY): pharmaceutical company partnered with EntreMed

- **Media coverage:**
 - **November 27, 1997:** article in Nature, mentioned in popular press (incl. NYT)
 - **May 3, 1998:** front page article in NYT
 - Content: very similar to that on November 27, 1997
Importance of News in Financial Markets

- **Canonical case:** cancer breakthrough in 1997
 - Huberman and Regev (2001)

- **Key players:**
 - Judah Folkman’s team: breakthrough in cancer research
 - EntreMed (ENMD): biotech company with licensing rights
 - Bristol-Myers Squibb (BMY): pharmaceutical company partnered with EntreMed

- **Media coverage:**
 - **November 27, 1997:** article in Nature, mentioned in popular press (incl. NYT)
 - **May 3, 1998:** front page article in NYT
 - Content: very similar to that on November 27, 1997
 - No other news on May 3
Importance of News in Financial Markets

A Cure for Cancer: Market Reaction

ENMD stock price reaction on November 27, 1997

ENMD stock price reaction on May 3, 1998
Importance of News in Financial Markets

A Cure for Cancer: Market Reaction

ENMD stock price reaction on November 27, 1997

+28.5%

ENMD stock price reaction on May 3, 1998

+330%
Importance of News in Financial Markets

A Cure for Cancer: Market Reaction

ENMD stock price reaction on November 27, 1997: +28.5%

ENMD stock price reaction on May 3, 1998: +330%
Importance of News in Financial Markets
Lessons from “A Cure for Cancer”

1. New information may not receive sufficient attention immediately
Importance of News in Financial Markets
Lessons from “A Cure for Cancer”

1. New information may not receive sufficient attention immediately
2. Old news may receive attention when it shouldn’t
Importance of News in Financial Markets
Lessons from “A Cure for Cancer”

1. New information may not receive sufficient attention immediately
2. Old news may receive attention when it shouldn’t
3. Investors’ attention to news is of great import to asset prices
Importance of News in Financial Markets
Lessons from “A Cure for Cancer”

1. New information may not receive sufficient attention immediately
2. Old news may receive attention when it shouldn’t
3. Investors’ attention to news is of great import to asset prices

- **Financial data science**: large datasets of news publication and consumption
Importance of News in Financial Markets
Lessons from “A Cure for Cancer”

1. New information may not receive sufficient attention immediately
2. Old news may receive attention when it shouldn’t
3. Investors’ attention to news is of great import to asset prices

- Financial data science: large datasets of news publication and consumption
 - Understand how information and attention affect markets
Importance of News in Financial Markets
Lessons from “A Cure for Cancer”

1. New information may not receive sufficient attention immediately
2. Old news may receive attention when it shouldn’t
3. Investors’ attention to news is of great import to asset prices

Financial data science: large datasets of news publication and consumption

- Understand how information and attention affect markets
- Inform policies on information dissemination
News Publication and Consumption

- Millions of news stories published per day
- Read by hundreds of thousands of finance professionals, millions of other individuals
News Publication and Consumption

Delay from Publication to Read
Inattention and Gradual Information Diffusion

- Fedyk (2016): understand consequences of new information not receiving attention immediately
Inattention and Gradual Information Diffusion

- Fedyk (2016): understand consequences of new information not receiving attention immediately

1. Slow price adjustment around individual news articles
Inattention and Gradual Information Diffusion

- Fedyk (2016): understand consequences of new information not receiving attention immediately
 1. Slow price adjustment around individual news articles
 2. Post-earnings-announcement drift
Inattention and Gradual Information Diffusion

- Fedyk (2016): understand consequences of new information not receiving attention immediately
 1. Slow price adjustment around individual news articles
 2. Post-earnings-announcement drift
 3. Log-term return momentum
Inattention and Gradual Information Diffusion

Question

Does immediacy of attention predict immediacy of the price response?
Inattention and Gradual Information Diffusion

Question

Does immediacy of attention predict immediacy of the price response?
Inattention and Gradual Information Diffusion

Question

Does immediacy of attention predict immediacy of the price response?
Inattention and Gradual Information Diffusion

Question

Does immediacy of attention predict immediacy of the price response?

Publication timestamp

- t
- $t+1\text{ min}$
- $t+5\text{ min}$

Immediate attention

5-minute window
Inattention and Gradual Information Diffusion

Question

Does immediacy of attention predict immediacy of the price response?
Inattention and Gradual Information Diffusion

- Share of immediate attention: \(\frac{Attention_{[t,t+1\text{min}]} \times \text{Attention}_{[t,t+5\text{min}]} }{1} \)
- Share of immediate price change: \(\frac{Price\text{Var}_{[t,t+2\text{min}]} \times Price\text{Var}_{[t,t+5\text{min}]} }{1} \)
Inattention and Gradual Information Diffusion

- Share of immediate attention: \(\frac{Attention_{[t,t+1\,min]}}{Attention_{[t,t+5\,min]}} \)
- Share of immediate price change: \(\frac{PriceVar_{[t,t+2\,min]}}{PriceVar_{[t,t+5\,min]}} \)

<table>
<thead>
<tr>
<th>Click window</th>
<th>Immediate price variance window</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 minute</td>
<td>2 minutes</td>
</tr>
<tr>
<td>1 minute</td>
<td>0.31†</td>
</tr>
<tr>
<td>Standard error</td>
<td>(0.17)</td>
</tr>
<tr>
<td>2 minutes</td>
<td>0.28†</td>
</tr>
<tr>
<td>Standard error</td>
<td>(0.17)</td>
</tr>
</tbody>
</table>

- 10% more immediate attention corresponds to 3% more immediate price variance
Inattention and Gradual Information Diffusion

Post-Earnings-Announcement Drift

- Earnings surprise: difference in actual earnings and expected earnings
 - Expected earnings measured as earnings from same quarter a year ago
 - Normalized by the standard deviation of this measure over 20 quarters

\[
SUE_{i,t} = \frac{Earnings_{i,t} - Earnings_{i,t-4}}{\sigma_{i,[t-20,t-1]}}
\]

Post-earnings-announcement drift phenomenon:
- After positive earnings surprises, price continues to rise for 20-40 days
- After negative earnings surprises, price continues to fall for 20-40 days

[Ball and Brown (1968), Foster, Olsen, and Shevlin (1984), Bernard and Thomas (1989)]
Inattention and Gradual Information Diffusion

Post-Earnings-Announcement Drift

- Earnings surprise: difference in actual earnings and expected earnings
 - Expected earnings measured as earnings from same quarter a year ago
 - Normalized by the standard deviation of this measure over 20 quarters

\[SUE_{i,t} = \frac{Earnings_{i,t} - Earnings_{i,t-4}}{\sigma_{i,[t-20,t-1]}} \]

- Post-earnings-announcement drift phenomenon:
 - After positive earnings surprises, price continues to rise for 20-40 days
 - After negative earnings surprises, price continues to fall for 20-40 days
 - [Ball and Brown (1968), Foster, Olsen, and Shevlin (1984), Bernard and Thomas (1989)]
Inattention and Gradual Information Diffusion

Post-Earnings-Announcement Drift

- Earnings surprise: difference in actual earnings and expected earnings
 - Expected earnings measured as earnings from same quarter a year ago
 - Normalized by the standard deviation of this measure over 20 quarters

\[SUE_{i,t} = \frac{Earnings_{i,t} - Earnings_{i,t-4}}{\sigma_{i,[t-20,t-1]}} \]

- Post-earnings-announcement drift phenomenon:
 - After positive earnings surprises, price continues to rise for 20-40 days
 - After negative earnings surprises, price continues to fall for 20-40 days
 - [Ball and Brown (1968), Foster, Olsen, and Shevlin (1984), Bernard and Thomas (1989)]

Question

Is the post-earnings-announcement drift driven by delayed attention?
Inattention and Gradual Information Diffusion

Post-Earnings-Announcement Drift

Sort announcing firms based on:

- **Earnings surprise**: $SUE_{i,t}$ for firm i at announcement t
- **Attention**: $ImmClicks_{i,t} = \text{percentage of reads on earnings news that occur on the first day}$
Inattention and Gradual Information Diffusion

Post-Earnings-Announcement Drift

- Sort announcing firms based on:
 - Earnings surprise: \(SUE_{i,t} \) for firm \(i \) at announcement \(t \)
 - Attention: \(ImmClicks_{i,t} \) = percentage of reads on earnings news that occur on the first day

- For each portfolio: compute \(Drift_{i,t} \), abnormal returns over 20 days after the announcement
Inattention and Gradual Information Diffusion

Post-Earnings-Announcement Drift

- Sort announcing firms based on:
 - Earnings surprise: \(SUE_{i,t} \) for firm \(i \) at announcement \(t \)
 - Attention: \(ImmClicks_{i,t} = \) percentage of reads on earnings news that occur on the first day

- For each portfolio: compute \(Drift_{i,t} \), abnormal returns over 20 days after the announcement

- Conjecture: positive relationship between \(SUE_{i,t} \) and \(Drift_{i,t} \) is higher when \(ImmClicks_{i,t} \) is lower
Inattention and Gradual Information Diffusion

Post-Earnings-Announcement Drift

<table>
<thead>
<tr>
<th>SUE quintile</th>
<th>1 (bottom)</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5(top)</th>
<th>Diff (5-1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (bottom)</td>
<td>-1.24%</td>
<td>-1.31%†</td>
<td>-1.04%</td>
<td>0.00%</td>
<td>0.55%*</td>
<td>1.79%*</td>
</tr>
<tr>
<td>2</td>
<td>-1.30%†</td>
<td>-0.06%</td>
<td>-0.89%</td>
<td>0.09%</td>
<td>0.64%†</td>
<td>1.94%*</td>
</tr>
<tr>
<td>3</td>
<td>-1.28%</td>
<td>-0.39%</td>
<td>-0.59%</td>
<td>0.16%</td>
<td>-0.98%</td>
<td>0.30%</td>
</tr>
<tr>
<td>4</td>
<td>-0.49%</td>
<td>-0.48%</td>
<td>0.10%</td>
<td>-0.30%</td>
<td>-0.44%</td>
<td>0.05%</td>
</tr>
<tr>
<td>5</td>
<td>0.25%</td>
<td>0.39%</td>
<td>0.32%</td>
<td>0.04%</td>
<td>-0.17%</td>
<td>-0.42%</td>
</tr>
</tbody>
</table>

* and † denote significance at the 5% and 10% levels, respectively.

- **PEAD** stronger when attention is less immediate
Momentum phenomenon:
- Stocks that performed well over the past 3-12 months continue to do well in the next 3-12 months
- Stocks that underperformed in the past 3-12 months continue to do so in the next 3-12 months
Inattention and Gradual Information Diffusion

Return Momentum

- **Momentum phenomenon:**
 - Stocks that performed well over the past 3-12 months continue to do well in the next 3-12 months
 - Stocks that underperformed in the past 3-12 months continue to do so in the next 3-12 months

Question

Is delayed attention related to return momentum?
Inattention and Gradual Information Diffusion

Return Momentum

- **Momentum proxy**: for each firm i, $MOM_i = \text{correlation between } Ret_t$ and $Ret_{[t-12,t-2]}$
Inattention and Gradual Information Diffusion

Return Momentum

- **Momentum proxy**: for each firm i, $MOM_i = \text{correlation between } Ret_t$ and $Ret_{[t-12, t-2]}$

- **Attention speed**: for each firm compute measures of speed of clicks on their news
 - **Proxies**: mean / median lag from publication to click, percentage of clicks within first day / week
 - **Adjusted proxies**: take residuals from regression on size, industry FE; normalize to mean zero, standard deviation one
Inattention and Gradual Information Diffusion

Return Momentum

- **Momentum proxy**: for each firm i, $MOM_i = \text{correlation between } Ret_t$ and $Ret_{[t-12,t-2]}$

- **Attention speed**: for each firm compute measures of speed of clicks on their news
 - **Proxies**: mean / median lag from publication to click, percentage of clicks within first day / week
 - **Adjusted proxies**: take residuals from regression on size, industry FE; normalize to mean zero, standard deviation one

- Cross-sectional regression of MOM_i on each attention proxy $Attention_i$:

 $$MOM_i = \alpha + \beta Attention_i + \epsilon_i$$
Inattention and Gradual Information Diffusion

Return Momentum

<table>
<thead>
<tr>
<th></th>
<th>Lag to read</th>
<th>Percentage of quick reads</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MeanTimeLag</td>
<td>MedTimeLag</td>
</tr>
<tr>
<td>Raw</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coefficient</td>
<td>0.07**</td>
<td>0.17*</td>
</tr>
<tr>
<td>Standard error</td>
<td>(0.01)</td>
<td>(0.08)</td>
</tr>
<tr>
<td>Adj.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coefficient</td>
<td>0.01**</td>
<td>0.003</td>
</tr>
<tr>
<td>Standard error</td>
<td>(0.004)</td>
<td>(0.005)</td>
</tr>
</tbody>
</table>

- * and † denote significance at the 5% and 10% levels, respectively.

- Higher momentum for firms whose news receives slower attention
Attention to Stale News

- Inattention to news is important for prices
Attention to Stale News

- Inattention to news is important for prices
- What about too much attention to unimportant news?
Attention to Stale News

- Inattention to news is important for prices
- What about too much attention to unimportant news?
- Enke and Zimmermann (2014): humans have trouble accounting for complex correlation structures in information signals
Attention to Stale News

- Inattention to news is important for prices

- What about too much attention to unimportant news?

- Enke and Zimmermann (2014): humans have trouble accounting for complex correlation structures in information signals

Question

When do investors continue paying attention to stale information?
Fedyk and Hodson (2014): understand how old information makes its way into prices
Attention to Stale News

- Fedyk and Hodson (2014): understand how old information makes its way into prices

- Differentiate between types of stale news
 - Duplicate: news story with content copied from single previous story
 - Aggregate: news story with stale content spanned by multiple previous stories
 - Information processing: easier to identify duplicate stale news than aggregate
 - Do investors react more to aggregation of stale information?
Attention to Stale News

Duplicate News: Example (November 2013)

- *Bloomberg News* on November 10, 2013:
 “Apple Said Developing Curved iPhone Screens”
Attention to Stale News

Duplicate News: Example (November 2013)

- *Bloomberg News* on November 10, 2013:
 “Apple Said Developing Curved iPhone Screens”

- *New York Post* on November 11, 2013:
 “Apple developing larger, curved-screen iPhones”
Attention to Stale News

Aggregate News: Example (October 3, 2012)

- *The Fly On The Wall*: “CELG: VentiRx announces collaboration with Celgene for VTX-233”
Attention to Stale News

Aggregate News: Example (October 3, 2012)

- *The Fly On The Wall*: “CELG: VentiRx announces collaboration with Celgene for VTX-233”

- *Bloomberg News*: “Celgene to retain exclusive option to acquire VentiRx”
Attention to Stale News

Aggregate News: Example (October 3, 2012)

- *The Fly On The Wall*: “CELG: VentiRx announces collaboration with Celgene for VTX-233”

- *Bloomberg News*: “Celgene to retain exclusive option to acquire VentiRx”

- Briefing.com: “VentiRx Pharmaceuticals announced the formation of an exclusive, world-wide collaboration with Celgene (CELG) for the development of VTX-2337 [...]. Celgene will retain the exclusive option to acquire VentiRx”
Attention to Stale News

Data Processing

Information: extract unique words from each article

- Exclude common stop words ("a", "the", "in", "when", etc) and numbers
- Standard stemming algorithm [Porter (1980)]: e.g., "earned" and "earning" become "earn-"
Information: extract unique words from each article
 ▶ Exclude common stop words ("a", "the", "in", "when", etc) and numbers
 ▶ Standard stemming algorithm [Porter (1980)]: e.g., "earned" and "earning" become "earn-"

Norm \| \cdot \|: number of unique words
 ▶ E.g., \|s_1 \cap s_2\| = \# unique words appearing in both stories, s_1 and s_2
Attention to Stale News

Article Staleness

- Unigram similarity of article s' to article s:

$$\text{Sim}(s, s') = \frac{||s \cap s'||}{||s||}$$

Example:

\triangleright $s = \text{“Here comes latest article.”}$

\triangleright $s' = \text{“Previously seen article.”}$

\triangleright $||s|| = 4$

\triangleright $||s \cap s'|| = 1$

\triangleright $\text{Sim}(s, s') = 0.25$
Attention to Stale News

Article Staleness

- Unigram similarity of article s' to article s:

$$Sim(s, s') = \frac{|s \cap s'|}{|s|}$$

- Example:
 - $s = \text{“Here comes latest article.”}$
 - $s' = \text{“Previously seen article.”}$
 - $|s| = \# \text{ words in } s = 4$
 - $|s \cap s'| = \# \text{ words in both } s \text{ and } s' (\text{“article”}) = 1$
 - $\implies Sim(s, s') = 0.25$
Attention to Stale News

Article Staleness

- **Staleness**: amount of information captured by previous articles for same firm
 - For each article s, look at stories tagged with same firm within last 3 days
 - Select textually closest 5 stories: $s_1, ..., s_5$ with maximal $Sim(s, s_i)$
 - Staleness = percentage of s's content covered by $s_1, ..., s_5$:
 \[
 Stale(s) = \frac{||s \cap (\bigcup_{i=1}^{5} s'_i(s))||}{||s||}
 \]
Attention to Stale News

Duplicates vs. Aggregates

Panel 1

Panel 2
Attention to Stale News

Duplicates vs. Aggregates

- **Duplicate measure**: similarity to closest preceding article:

\[
Duplicate(s) = \frac{\max_{s'} ||s \cap s'||}{||s||}
\]
Attention to Stale News

Duplicates vs. Aggregates

- **Duplicate measure**: similarity to closest preceding article:

 \[
 \text{Duplicate}(s) = \frac{\max_{s'} \|s \cap s'\|}{\|s\|}
 \]

- **Aggregate measure**: difference between measures of staleness and duplicate:

 \[
 \text{Aggregate}(s) = \text{Stale}(s) - \text{Duplicate}(s)
 \]

 - Info that is not novel, but also not covered by single closest neighbor
Attention to Stale News

Article Classification

- Classify each article as novel / duplicate / aggregate

Article s
Attention to Stale News

Article Classification

- Classify each article as novel / duplicate / aggregate

\[Stale(s) \geq 0.6? \]
Attention to Stale News

Article Classification

- Classify each article as novel / duplicate / aggregate

\[
\text{Article } s \\
\text{Stale}(s) \geq 0.6? \\
\text{No} \\
\text{Novel}
\]
Attention to Stale News

Article Classification

- Classify each article as novel / duplicate / aggregate

\[Stale(s) \geq 0.6? \]

- No → Novel
- Yes →
 \[Duplicate(s)/Stale(s) \geq 0.8? \]
 - No
 - Yes
Attention to Stale News

Article Classification

- Classify each article as novel / duplicate / aggregate

\[\text{Stale}(s) \geq 0.6? \]

- No → Novel
- Yes →
 - \[\frac{\text{Duplicate}(s)}{\text{Stale}(s)} \geq 0.8? \]
 - Yes → Duplicate
 - No → Novel
Attention to Stale News

Article Classification

- Classify each article as novel / duplicate / aggregate

![Decision Tree Diagram]

- $Stale(s) \geq 0.6$?
 - No: Novel
 - Yes: $Duplicate(s)/Stale(s) \geq 0.8$?
 - No: Aggregate
 - Yes: Duplicate
Attention to Stale News

Effect of Aggregation in Stale News

- Firm-level proxies: percentages of articles about firm i on date t that are stale and aggregate:

 \[
PrcStale_{it} = \frac{\sum_{s \in S_{it}} StaleDummy(s)}{|S_{it}|}
 \]

 \[
PrcAggregate_{it} = \frac{\sum_{s \in S_{it}} AggregateDummy(s)}{|S_{it}|}
 \]

- Effect of $PrcStale_{it}$ and $PrcAggregate_{it}$ on the size of returns:

| Explanatory variable | Dependent variable: $|AbnRet|_{i,t+1}$ |
|----------------------|--------------------------------------|
| $PrcStale_{it}$ | -0.045** (0.003) |
| $PrcAggregate_{it}$ | 0.016** (0.003) |

** = significant at the 1% level
Attention to Stale News

Results: Time Series

Panel 1: Staleness

Panel 2: Aggregation
Attention to news is not allocated efficiently
 ▶ Insufficient attention to important news
 ▶ Too much attention to complex stale news

Question: How do market participants choose which news to read?
Front page positioning likely had a large effect in “Cure for Cancer”
Other potential determinants of whether a news gets read:
 ▶ Timing: different days of the week
 ▶ Firm characteristics: large vs. small firms
 ▶ Article characteristics: good vs. bad news
Understanding Consumption of News

- Attention to news is not allocated efficiently
 - Insufficient attention to important news
 - Too much attention to complex stale news

Question

How do market participants choose which news to read?
Understanding Consumption of News

• Attention to news is not allocated efficiently
 ▶ Insufficient attention to important news
 ▶ Too much attention to complex stale news

Question

How do market participants choose which news to read?

• Front page positioning likely had a large effect in “Cure for Cancer”
Understanding Consumption of News

- Attention to news is not allocated efficiently
 - Insufficient attention to important news
 - Too much attention to complex stale news

Question

How do market participants choose which news to read?

- Front page positioning likely had a large effect in “Cure for Cancer”
- Other potential determinants of whether a news gets read:
Understanding Consumption of News

- Attention to news is not allocated efficiently
 - Insufficient attention to important news
 - Too much attention to complex stale news

Question

How do market participants choose which news to read?

- Front page positioning likely had a large effect in “Cure for Cancer”
- Other potential determinants of whether a news gets read:
 - **Timing**: different days of the week
Understanding Consumption of News

- Attention to news is not allocated efficiently
 - Insufficient attention to important news
 - Too much attention to complex stale news

Question

How do market participants choose which news to read?

- Front page positioning likely had a large effect in “Cure for Cancer”
- Other potential determinants of whether a news gets read:
 - **Timing**: different days of the week
 - **Firm characteristics**: large vs. small firms
Understanding Consumption of News

- Attention to news is not allocated efficiently
 - Insufficient attention to important news
 - Too much attention to complex stale news

Question

How do market participants choose which news to read?

- Front page positioning likely had a large effect in “Cure for Cancer”

- Other potential determinants of whether a news gets read:
 - **Timing**: different days of the week
 - **Firm characteristics**: large vs. small firms
 - **Article characteristics**: good vs. bad news
Understanding Consumption of News

Effect of Front Page Positioning

- News placed on the front page of a newspaper or pinned to the top of a news website receive more attention
Understanding Consumption of News

Distribution of Reads by Day of the Week

- Average # of reads by day of the week (in millions)

![Bar chart showing average number of reads by day of the week.](image)
Understanding Consumption of News

Attention by Firm Size

- For each firm, record the time lag between publication and click
- Sort firms into deciles based on size
- Within each size decile, compute median time lag
Understanding Consumption of News

Attention by Firm Size

- For each firm, record the time lag between publication and click
- Sort firms into deciles based on size
- Within each size decile, compute median time lag
Understanding Consumption of News

Article Characteristics: Sentiment

- Fedyk (2015): Differential consumption of positive and negative news
Understanding Consumption of News

Article Characteristics: Sentiment

- Fedyk (2015): Differential consumption of positive and negative news

- Preference against bad news:
 - Karlsson, Loewenstein, and Seppi (2009)
 - “Ostrich effect”: less portfolio-monitoring during falling markets
Understanding Consumption of News

Article Characteristics: Sentiment

- Fedyk (2015): Differential consumption of positive and negative news

- Preference against bad news:
 - Karlsson, Loewenstein, and Seppi (2009)
 - “Ostrich effect”: less portfolio-monitoring during falling markets

- Preference in favor of bad news:
 - Falk and Zimmermann (2014)
 - Subjects prefer to receive information about upcoming discomfort sooner, averse to piecemeal information
Understanding Consumption of News

Sentiment: Examples

- **Positive**: “Apple on pace to beat Sept. Qtr. iPhone unit estimate of 4.1M” (*TheFlyOnTheWall.com*, 8/13/2008)

- **Negative**: “Goldman Sachs Downgrades Apple (AAPL) to Neutral” (*StreetInsider.com*, 12/15/2008)

- **Neutral**: “Apple to unveil new laptop, but not tablet computer” (*CNBC*, 6/5/2009)
Understanding Consumption of News

Sentiment: Examples

- **Positive:** “Apple on pace to beat Sept. Qtr. iPhone unit estimate of 4.1M” (*TheFlyOnTheWall.com*, 8/13/2008)

- **Negative:** “Goldman Sachs Downgrades Apple (AAPL) to Neutral” (*StreetInsider.com*, 12/15/2008)
Understanding Consumption of News

Sentiment: Examples

- **Positive:** “Apple on pace to beat Sept. Qtr. iPhone unit estimate of 4.1M” (*TheFlyOnTheWall.com*, 8/13/2008)

- **Negative:** “Goldman Sachs Downgrades Apple (AAPL) to Neutral” (*StreetInsider.com*, 12/15/2008)

- **Neutral:** “Apple to unveil new laptop, but not tablet computer” (*CNBC*, 6/5/2009)
Understanding Consumption of News

Distribution of News Sentiment

- Positive: 33%
- Neutral: 56%
- Negative: 11%
Understanding Consumption of News

Sentiment: Univariate Analysis

- Average reads for positive / neutral / negative stories:

![Bar chart showing average reads](chart.png)

- Average reads:
 - Positive: 30
 - Neutral: 24
 - Negative: 38

- Univariate regression:
 - Intercept: 24.28
 - Positive Dummy: 5.49
 - Negative Dummy: 13.99

- t-statistics on the differences:
 - Positive - Neutral: 20.55
 - Negative - Neutral: 30.48
 - Positive - Negative: 35.51

Anastassia Fedyk (HBS)
Understanding Consumption of News

Sentiment: Univariate Analysis

- Average reads for positive / neutral / negative stories:

![Bar chart showing average reads for positive, neutral, and negative stories.]

- t-statistics on the differences:

<table>
<thead>
<tr>
<th></th>
<th>Positive - Neutral</th>
<th>Negative - Neutral</th>
<th>Positive - Negative</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>20.55</td>
<td>30.48</td>
<td>35.51</td>
</tr>
</tbody>
</table>
Understanding Consumption of News

Sentiment: Univariate Analysis

- Average reads for positive / neutral / negative stories:

 ![Bar chart showing average reads for positive, neutral, and negative stories](chart.png)

 - Positive: 30
 - Neutral: 24
 - Negative: 38

- \(t \)-statistics on the differences:

<table>
<thead>
<tr>
<th>Difference</th>
<th>(t)-statistic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive - Neutral</td>
<td>20.55</td>
</tr>
<tr>
<td>Negative - Neutral</td>
<td>30.48</td>
</tr>
<tr>
<td>Positive - Negative</td>
<td>35.51</td>
</tr>
</tbody>
</table>

- Univariate regression:

<table>
<thead>
<tr>
<th>Intercept</th>
<th>Positive Dummy</th>
<th>Negative Dummy</th>
</tr>
</thead>
<tbody>
<tr>
<td>24.28</td>
<td>5.49</td>
<td>13.99</td>
</tr>
<tr>
<td>((0.16))</td>
<td>((0.26))</td>
<td>((0.40))</td>
</tr>
</tbody>
</table>
Understanding Consumption of News

Sentiment: Multivariate Analysis

<table>
<thead>
<tr>
<th></th>
<th>Dependent var: Reads_s</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No Controls</td>
<td>Baseline Controls</td>
<td>Source Effects</td>
<td>Date FE</td>
<td>Firm FE</td>
</tr>
<tr>
<td>Positive_s</td>
<td>5.49**</td>
<td>2.17**</td>
<td>11.66**</td>
<td>12.02**</td>
<td>12.34**</td>
</tr>
<tr>
<td></td>
<td>(0.26)</td>
<td>(0.27)</td>
<td>(0.27)</td>
<td>(0.27)</td>
<td>(0.27)</td>
</tr>
<tr>
<td>Negative_s</td>
<td>13.99**</td>
<td>12.03**</td>
<td>17.49**</td>
<td>17.57**</td>
<td>14.76**</td>
</tr>
<tr>
<td></td>
<td>(0.40)</td>
<td>(0.40)</td>
<td>(0.39)</td>
<td>(0.39)</td>
<td>(0.40)</td>
</tr>
<tr>
<td>Length_s</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Staleness_s</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Source_s</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Date FE</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Firm FE</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

** = significant at the 1% level
Information Propagation in Financial Markets

Takeaways

- What we learn from the data:
 - Delayed attention to new information
 - Continued attention to stale information, especially aggregate news
 - Attention allocated towards bad news, news about large firms
Information Propagation in Financial Markets

Takeaways

- What we learn from the data:
 - Delayed attention to new information
 - Continued attention to stale information, especially aggregate news
 - Attention allocated towards bad news, news about large firms

- Important implications for:
 - Financial markets: prices, liquidity, stability
 - Financial market participants: better news following, profitable trading strategies
 - News providers and regulators: how to make the process more efficient?
Information Propagation in Financial Markets

Takeaways

• What we learn from the data:
 ▶ Delayed attention to new information
 ▶ Continued attention to stale information, especially aggregate news
 ▶ Attention allocated towards bad news, news about large firms

• Important implications for:
 ▶ Financial markets: prices, liquidity, stability
Takeaways

- What we learn from the data:
 - Delayed attention to new information
 - Continued attention to stale information, especially aggregate news
 - Attention allocated towards bad news, news about large firms

- Important implications for:
 - **Financial markets**: prices, liquidity, stability
 - **Financial market participants**: better news following, profitable trading strategies
Information Propagation in Financial Markets

Takeaways

- What we learn from the data:
 - Delayed attention to new information
 - Continued attention to stale information, especially aggregate news
 - Attention allocated towards bad news, news about large firms

- Important implications for:
 - **Financial markets**: prices, liquidity, stability
 - **Financial market participants**: better news following, profitable trading strategies
 - **News providers and regulators**: how to make the process more efficient?